An Desert cooler (also swamp cooler, desert cooler, and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from typical air conditioning systems which use vapor-compression or absorption refrigeration cycles. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor, which requires much less energy than refrigeration. In extremely dry climates, it also has the added benefit of conditioning the air with more moisture for the comfort of occupants. Unlike refrigeration, it requires a water source, and must continually consume water to operate.
Civilizations throughout the ages have found ingenious ways to combat the heat in their region. An earlier form of air cooling, the windcatcher (Bâd gir), was invented in Persia (Iran) thousands of years ago in the form of wind shafts on the roof, which caught the wind and passed it through water and blew the cooled air into the building. Nowadays Iranians have changed the windcatcher into an evaporative cooler (Coolere Âbi) and use it widely. There are 9,000,000 evaporative coolers in central Iran, and in just the first two months of year 1385 in the Persian/Iranian calender (April–May 2006) 130,000 evaporative coolers were sold in Iran.
Evaporative cooling is a physical phenomenon in which evaporation of a liquid, typically into surrounding air, cools an object or a liquid in contact with it. Latent heat, the amount of heat that is needed to evaporate the liquid, is drawn from the air. When considering water evaporating into air, the wet-bulb temperature, as compared to the air's dry-bulb temperature, is a measure of the potential for evaporative cooling. The greater the difference between the two temperatures, the greater the evaporative cooling effect. When the temperatures are the same, no net evaporation of water in air occurs, thus there is no cooling effect.
Evaporative cooling is a common form of cooling buildings for thermal comfort since it is relatively cheap and requires less energy than other forms of cooling. However, evaporative cooling requires an abundant water source as an evaporate, and is only efficient when the relative humidity is low, restricting its effective use to dry climates. Evaporative cooling also raises the internal humidity level significantly, which can cause problems such as lumpy salt, swelling of wood paneling, doors and trim, pianos going out of tune or suffering internal rusting, etc.
All designs take advantage of the fact that water has one of the highest known enthalpy of vaporization (latent heat of vaporization) values of any common substance.
Typically, residential and industrial evaporative coolers use direct evaporation and can be described as an enclosed metal or plastic box with vented sides containing a centrifugal fan or 'blower', electric motor with pulleys (known as 'sheaves' in HVAC), (or a direct-driven axial fan), and a water pump to wet the evaporative cooling pads. The units can be mounted on the roof (down draft, or downflow), or exterior walls or windows (side draft, or horizontal flow) of buildings. To cool, the fan draws ambient air through vents on the unit's sides and through the damp pads. Heat in the air evaporates water from the pads which are constantly re-dampened to continue the cooling process. Thus cooled, moist air is then delivered to the building via a vent in the roof or wall.
Traditionally, evaporative cooler pads consist of excelsior (wood wool) (aspen wood fiber) inside a containment net, but more modern materials, such as some plastics and melamine paper, are entering use as cooler-pad media. Wood absorbs some of the water, which allows the wood fibers to cool passing air to a lower temperature than some synthetic materials.
Cooling towers are structures for cooling water or other working media to near-ambient wet-bulb temperature. Wet cooling towers operate on the evaporative cooling principle, but are optimized to cool the water rather than the air. Cooling towers can often be found on large buildings or on industrial sites. They transfer heat to the environment from chillers, industrial processes, or the Rankine power cycle, for example.
Misting systems work by forcing water via a high pressure pump and tubing through a brass and stainless steel mist nozzle that has an orifice of about 5 micrometres, thereby producing a micro-fine mist. The water droplets that create the mist are so small that they instantly flash evaporate. Flash evaporation can reduce the surrounding air temperature by as much as 35 F° (20 C°) in just seconds. For patio systems, it is ideal to mount the mist line approximately 8 to 10 feet (2.4 to 3.0 m) above the ground for optimum cooling. Misting is used for applications such as flowerbeds, pets, livestock, kennels, insect control, odor control, zoos, veterinary clinics, produce cooling and greenhouses.
A misting fan is similar to a humidifier. A fan blows a fine mist of water into the air. If the air is not too humid, the water evaporates, absorbing heat from the air, allowing the misting fan to work as an air conditioner. A misting fan may be used outdoors, especially in a dry climate.
Understanding evaporative cooling performance requires an understanding of psychrometrics. Evaporative cooling performance is dynamic due to changes in external temperature and humidity level. A residential cooler should cool air to within 3–4 C° (5–7 F°) of the corresponding wet-bulb temperature.
Comparison of Evaporative cooling to phase-change air conditioning:
Less expensive to install
- Estimated cost for installation is about half that of central refrigerated air conditioning.
Performance
- High dewpoint (humidity) conditions decrease the cooling capability of the evaporative cooler.
- No dehumidification. Traditional air conditioners remove moisture from the air, except in very dry locations where recirculation can lead to a buildup of humidity. Evaporative cooling adds moisture, and in dry climates, dryness may improve thermal comfort at higher temperatures.