We promise, we won't send you any spam. You can easily unsubscribe.

Thermodynamics

Thermodynamics is the branch of physics that has to do with heat and temperature and their relation to energy and work. The behavior of these quantities is governed by the four laws of thermodynamics, irrespective of the composition or specific properties of the material or system in question. The laws of thermodynamics are explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering.

A description of any thermodynamic system employs the four laws of thermodynamics that form an axiomatic basis. The first law specifies that energy can be exchanged between physical systems as heat and work. The second law defines the existence of a quantity called entropy, that describes the direction, thermodynamically, that a system can evolve and quantifies the state of order of a system and that can be used to quantify the useful work that can be extracted from the system.

The history of thermodynamics as a scientific discipline generally begins with Otto von Guericke who, in 1650, built and designed the world's first vacuum pump and demonstrated a vacuum using his Magdeburg hemispheres. Guericke was driven to make a vacuum in order to disprove Aristotle's long-held supposition that 'nature abhors a vacuum'. Shortly after Guericke, the English physicist and chemist Robert Boyle had learned of Guericke's designs and, in 1656, in coordination with English scientist Robert Hooke, built an air pump. Using this pump, Boyle and Hooke noticed a correlation between pressure, temperature, and volume. In time, Boyle's Law was formulated, which states that pressure and volume are inversely proportional. Then, in 1679, based on these concepts, an associate of Boyle's named Denis Papin built a steam digester, which was a closed vessel with a tightly fitting lid that confined steam until a high pressure was generated.

The etymology of thermodynamics has an intricate history. It was first spelled in a hyphenated form as an adjective (thermo-dynamic) and from 1854 to 1868 as the noun thermo-dynamics to represent the science of generalized heat engines.

The study of thermodynamical systems has developed into several related branches, each using a different fundamental model as a theoretical or experimental basis, or applying the principles to varying types of systems.

Classical thermodynamics is the description of the states of thermodynamic systems at near-equilibrium, that uses macroscopic, measurable properties. It is used to model exchanges of energy, work and heat based on the laws of thermodynamics. The qualifier classical reflects the fact that it represents the first level of understanding of the subject as it developed in the 19th century and describes the changes of a system in terms of macroscopic empirical (large scale, and measurable) parameters. A microscopic interpretation of these concepts was later provided by the development of statistical mechanics.

Statistical mechanics, also called statistical thermodynamics, emerged with the development of atomic and molecular theories in the late 19th century and early 20th century, and supplemented classical thermodynamics with an interpretation of the microscopic interactions between individual particles or quantum-mechanical states. This field relates the microscopic properties of individual atoms and molecules to the macroscopic, bulk properties of materials that can be observed on the human scale, thereby explaining classical thermodynamics as a natural result of statistics, classical mechanics, and quantum theory at the microscopic level.

Chemical thermodynamics is the study of the interrelation of energy with chemical reactions or with a physical change of state within the confines of the laws of thermodynamics.

Equilibrium thermodynamics is the systematic study of transformations of matter and energy in systems as they approach equilibrium. The word equilibrium implies a state of balance. In an equilibrium state there are no unbalanced potentials, or driving forces, within the system. A central aim in equilibrium thermodynamics is: given a system in a well-defined initial state, subject to accurately specified constraints, to calculate what the state of the system will be once it has reached equilibrium.

Thermodynamics is principally based on a set of four laws which are universally valid when applied to systems that fall within the constraints implied by each. In the various theoretical descriptions of thermodynamics these laws may be expressed in seemingly differing forms, but the most prominent formulations are the following:

  • Zeroth law of thermodynamics: If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.

An important concept in thermodynamics is the thermodynamic system, which is a precisely defined region of the universe under study. Everything in the universe except the system is called the surroundings. A system is separated from the remainder of the universe by a boundary which may be a physical boundary or notional, but which by convention defines a finite volume. Exchanges of work, heat, or matter between the system and the surroundings take place across this boundary.

When a system is at equilibrium under a given set of conditions, it is said to be in a definite thermodynamic state. The state of the system can be described by a number of state quantities that do not depend on the process by which the system arrived at its state. They are called intensive variables or extensive variables according to how they change when the size of the system changes. The properties of the system can be described by an equation of state which specifies the relationship between these variables. State may be thought of as the instantaneous quantitative description of a system with a set number of variables held constant.

There are two types of thermodynamic instruments, the meter and the reservoir. A thermodynamic meter is any device which measures any parameter of a thermodynamic system. In some cases, the thermodynamic parameter is actually defined in terms of an idealized measuring instrument. For example, the zeroth law states that if two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other. This principle, as noted by James Maxwell in 1872, asserts that it is possible to measure temperature. An idealized thermometer is a sample of an ideal gas at constant pressure. From the ideal gas law pV=nRT, the volume of such a sample can be used as an indicator of temperature; in this manner it defines temperature. Although pressure is defined mechanically, a pressure-measuring device, called a barometer may also be constructed from a sample of an ideal gas held at a constant temperature. A calorimeter is a device which is used to measure and define the internal energy of a system.

The central concept of thermodynamics is that of energy, the ability to do work. By the First Law, the total energy of a system and its surroundings is conserved. Energy may be transferred into a system by heating, compression, or addition of matter, and extracted from a system by cooling, expansion, or extraction of matter. In mechanics, for example, energy transfer equals the product of the force applied to a body and the resulting displacement.

Thermodynamic potentials are different quantitative measures of the stored energy in a system. Potentials are used to measure the energy changes in systems as they evolve from an initial state to a final state. The potential used depends on the constraints of the system, such as constant temperature or pressure. For example, the Helmholtz and Gibbs energies are the energies available in a system to do useful work when the temperature and volume or the pressure and temperature are fixed, respectively.

The following titles are more technical:

  • Bejan, Adrian (2016). Advanced Engineering Thermodynamics (4 ed.). Wiley. ISBN .
  • Cengel, Yunus A., & Boles, Michael A. (2002). Thermodynamics - an Engineering Approach. McGraw Hill. ISBN . OCLC 45791449.{{}}: CS1 maint: multiple names: authors list ()
  • Dunning-Davies, Jeremy (1997). Concise Thermodynamics: Principles and Applications. Horwood Publishing. ISBN . OCLC 36025958.
  • Kroemer, Herbert; Kittel, Charles (1980). Thermal Physics. W. H. Freeman Company. ISBN . OCLC 32932988. {{}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) ()
Report
Related items:
hazard recognition �...
READ MORE

hazard recognition – energy wheel safety talk

top 7 best carpenter...
READ MORE

top 7 best carpenters tool belt reviews: best quality belt for carpenters for 2023

vaco 3/16” 1/4” ...
READ MORE

vaco 3/16” 1/4” 5/16” 3/8” ratcheting box end hvac wrench - 70264 - usa $0.99

vintage vaco 70264 r...
READ MORE

vintage vaco 70264 ratcheting box end hvac wrench 3/16 x 5/16 & 1/4 x 3/8 usa $10.99

cart - vetopropac...
READ MORE

cart - vetopropac

amazon.com: hvac tec...
READ MORE

amazon.com: hvac technician ornament, best hvac technician ever ornament, best hvac technician christmas ornament, gift for hvac technician, birthday gift, anniversary, christmas ornament printed on both sides : home & kitchen

how to drill through...
READ MORE

how to drill through carpet without damaging it

how to spring clean ...
READ MORE

how to spring clean a metal roof

what you need to kno...
READ MORE

what you need to know about hvac safety in the workplace

ribbon cutting for b...
READ MORE

ribbon cutting for bcc shuttle bus service and outdoor fitness equipment – bronx community college

product management t...
READ MORE

product management through the lens of the seven stages of love

how to stop your bat...
READ MORE

how to stop your bathroom fan from blowing dust

3 ways to use simula...
READ MORE

3 ways to use simulation training to bridge the gap between theory and practice

how ai integration w...
READ MORE

how ai integration works: a new era for construction technology

how to make money in...
READ MORE

how to make money in construction in 2023 (types & how to earn money)

17 best irrigation t...
READ MORE

17 best irrigation tools to save more water in 2023

Hvac Hands